Python 代码优化技巧(二)
Python 是一种脚本语言,相比 C/C++ 这样的编译语言,在效率和性能方面存在一些不足,但是可以通过代码调整来提高代码的执行效率。本文整理一些代码优化技巧。
代码优化基本原则
- 代码正常运行后优化。
很多人一开始写代码就奔着性能优化的目标,“让正确的程序更快要比让快速的程序正确容易得多”,因此,优化的前提是代码能正常工作。过早地进行优化可能会忽视对总体性能指标的把握,在得到全局结果前不要主次颠倒。 - 权衡优化的代价。
优化是有代价的,想解决所有性能的问题是几乎不可能的。通常面临的选择是时间换空间或空间换时间。另外,开发代价也需要考虑。 - 优化关键耗时部分。
如果对代码的每一部分都去优化,这些修改会使代码难以阅读和理解。如果你的代码运行速度很慢,首先要找到代码运行慢的位置,通常是内部循环,专注于运行慢的地方进行优化。在其他地方,一点时间上的损失没有什么影响。
优化技巧
避免全局变量
在函数中编写代码而不要将其写为全局变量。 由于全局变量和局部变量实现方式不同,定义在全局范围内的代码运行速度会比定义在函数中的慢不少。通过将脚本语句放入到函数中,通常可带来 15% - 30% 的速度提升。
1 | # 不推荐写法 |
1 | # 推荐写法 |
避免 .
避免模块和函数属性访问
每次使用.
(属性访问操作符时)会触发特定的方法,如__getattribute__()
和__getattr__()
,这些方法会进行字典操作,因此会带来额外的时间开销。通过from import
语句,可以消除属性访问。
1 | # 不推荐写法 |
1 | # 推荐写法,第一次优化 . 模块属性访问 |
1 | # 推荐写法,第二次优化局部变量 sqrt,局部变量访问比全局变量快。 |
1 | # 推荐写法, 第三次优化函数属性 list.append() 方法 |
避免访问类内属性
避免 .
的原则也适用于类内属性,访问self._value
的速度会比访问一个局部变量更慢一些。通过将需要频繁访问的类内属性赋值给一个局部变量,可以提升代码运行速度。
1 | # 不推荐写法 |
1 | # 推荐写法,将self._value 赋值给局部变量 |
避免不必要的抽象
任何时候当你使用额外的处理层(比如装饰器、属性访问、描述器)去包装代码时,都会让代码变慢。大部分情况下,需要重新进行审视使用属性访问器的定义是否有必要,使用getter/setter
函数对属性进行访问通常是 C/C++ 程序员遗留下来的代码风格。如果真的没有必要,就使用简单属性。
1 | # 不推荐写法。 |
避免数据复制
避免无意义的数据复制
交换值时不使用中间变量
1
a, b = b, a
字符串拼接使用
join
而不是+
当使用a + b
拼接字符串时,由于 Python 中字符串是不可变对象,其会申请一块内存空间,将a
和b
分别复制到该新申请的内存空间中。因此,如果要拼接 n 个字符串,会产生 n-1 个中间结果,每产生一个中间结果都需要申请和复制一次内存,严重影响运行效率。而使用join()
拼接字符串时,会首先计算出需要申请的总的内存空间,然后一次性地申请所需内存,并将每个字符串元素复制到该内存中去。1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16# 不推荐写法
import string
from typing import List
def concatString(string_list: List[str]) -> str:
result = ''
for str_i in string_list:
result += str_i
return result
def main():
string_list = list(string.ascii_letters * 100)
for _ in range(10000):
result = concatString(string_list)
main()1
2
3
4
5
6
7
8
9
10
11
12
13# 推荐写法
import string
from typing import List
def concatString(string_list: List[str]) -> str:
return ''.join(string_list) # 使用 join 而不是 +
def main():
string_list = list(string.ascii_letters * 100)
for _ in range(10000):
result = concatString(string_list)
main()
利用 if
条件的短路特性
if
条件的短路特性是指对if a and b
这样的语句, 当a
为False
时将直接返回,不再计算b
;对于if a or b
这样的语句,当a
为True
时将直接返回,不再计算b
。因此, 为了节约运行时间,对于or
语句,应该将值为True
可能性比较高的变量写在or
前,而and
应该推后。
循环优化
- 利用
for
代替while
;这是由于Python中for
循环比while
循环更快; - 利用隐式
for
循环代替显式for
循环;例如隐式sum(range(10000))
; - 减少内层循环计算;
使用numba.jit
优化
参考另一篇文章:Python 代码优化技巧(一)
使用合适的数据结构
Python 内置的数据结构如str
, tuple
, list
, set
, dict
底层都是 C 实现的,速度非常快,自己实现新的数据结构想在性能上达到内置的速度几乎是不可能的。